5 research outputs found

    K-Anonymity Privacy Protection Algorithm for Multi-Dimensional Data against Skewness and Similarity Attacks

    No full text
    Currently, a significant focus has been established on the privacy protection of multi-dimensional data publishing in various application scenarios, such as scientific research and policy-making. The K-anonymity mechanism based on clustering is the main method of shared-data desensitization, but it will cause problems of inconsistent clustering results and low clustering accuracy. It also cannot defend against several common attacks, such as skewness and similarity attacks at the same time. To defend against these attacks, we propose a K-anonymity privacy protection algorithm for multi-dimensional data against skewness and similarity attacks (KAPP) combined with t-closeness. Firstly, we propose a multi-dimensional sensitive data clustering algorithm based on improved African vultures optimization. More specifically, we improve the initialization, fitness calculation, and solution update strategy of the clustering center. The improved African vultures optimization can provide the optimal solution with various dimensions and achieve highly accurate clustering of the multi-dimensional dataset based on multiple sensitive attributes. It ensures that multi-dimensional data of different clusters are different in sensitive data. After the dataset anonymization, similar sensitive data of the same equivalence class will become less, and it eventually does not satisfy the premise of being theft by skewness and similarity attacks. We also propose an equivalence class partition method based on the sensitive data distribution difference value measurement and t-closeness. Namely, we calculate the sensitive data distribution’s difference value of each equivalence class and then combine the equivalence classes with larger difference values. Each equivalence class satisfies t-closeness. This method can ensure that multi-dimensional data of the same equivalence class are different in multiple sensitive attributes, and thus can effectively defend against skewness and similarity attacks. Moreover, we generalize sensitive attributes with significant weight and all quasi-identifier attributes to achieve anonymous protection of the dataset. The experimental results show that KAPP improves clustering accuracy, diversity, and anonymity compared to other similar methods under skewness and similarity attacks

    K-Anonymity Privacy Protection Algorithm for Multi-Dimensional Data against Skewness and Similarity Attacks

    No full text
    Currently, a significant focus has been established on the privacy protection of multi-dimensional data publishing in various application scenarios, such as scientific research and policy-making. The K-anonymity mechanism based on clustering is the main method of shared-data desensitization, but it will cause problems of inconsistent clustering results and low clustering accuracy. It also cannot defend against several common attacks, such as skewness and similarity attacks at the same time. To defend against these attacks, we propose a K-anonymity privacy protection algorithm for multi-dimensional data against skewness and similarity attacks (KAPP) combined with t-closeness. Firstly, we propose a multi-dimensional sensitive data clustering algorithm based on improved African vultures optimization. More specifically, we improve the initialization, fitness calculation, and solution update strategy of the clustering center. The improved African vultures optimization can provide the optimal solution with various dimensions and achieve highly accurate clustering of the multi-dimensional dataset based on multiple sensitive attributes. It ensures that multi-dimensional data of different clusters are different in sensitive data. After the dataset anonymization, similar sensitive data of the same equivalence class will become less, and it eventually does not satisfy the premise of being theft by skewness and similarity attacks. We also propose an equivalence class partition method based on the sensitive data distribution difference value measurement and t-closeness. Namely, we calculate the sensitive data distribution’s difference value of each equivalence class and then combine the equivalence classes with larger difference values. Each equivalence class satisfies t-closeness. This method can ensure that multi-dimensional data of the same equivalence class are different in multiple sensitive attributes, and thus can effectively defend against skewness and similarity attacks. Moreover, we generalize sensitive attributes with significant weight and all quasi-identifier attributes to achieve anonymous protection of the dataset. The experimental results show that KAPP improves clustering accuracy, diversity, and anonymity compared to other similar methods under skewness and similarity attacks

    A Novel Data-Driven Evaluation Framework for Fork after Withholding Attack in Blockchain Systems

    No full text
    In the blockchain system, mining pools are popular for miners to work collectively and obtain more revenue. Nowadays, there are consensus attacks that threaten the efficiency and security of mining pools. As a new type of consensus attack, the Fork After Withholding (FAW) attack can cause huge economic losses to mining pools. Currently, there are a few evaluation tools for FAW attacks, but it is still difficult to evaluate the FAW attack protection capability of target mining pools. To address the above problem, this paper proposes a novel evaluation framework for FAW attack protection of the target mining pools in blockchain systems. In this framework, we establish the revenue model for mining pools, including honest consensus revenue, block withholding revenue, successful fork revenue, and consensus cost. We also establish the revenue functions of target mining pools and other mining pools, respectively. In particular, we propose an efficient computing power allocation optimization algorithm (CPAOA) for FAW attacks against multiple target mining pools. We propose a model-solving algorithm based on improved Aquila optimization by improving the selection mechanism in different optimization stages, which can increase the convergence speed of the model solution and help find the optimal solution in computing power allocation. Furthermore, to greatly reduce the possibility of falling into local optimal solutions, we propose a solution update mechanism that combines the idea of scout bees in an artificial bee colony optimization algorithm and the constraint of allocating computing power. The experimental results show that the framework can effectively evaluate the revenue of various mining pools. CPAOA can quickly and accurately allocate the computing power of FAW attacks according to the computing power of the target mining pool. Thus, the proposed evaluation framework can effectively help evaluate the FAW attack protection capability of multiple target mining pools and ensure the security of the blockchain system

    Community Governance Based on Sentiment Analysis: Towards Sustainable Management and Development

    No full text
    The promotion of community governance by digital means is an important research topic in developing smart cities. Currently, community governance is mostly based on reactive response, which lacks timely and proactive technical means for emergency monitoring. The easiest way for residents to contact their properties is to call the property call center, and the call centers of many properties store many speech data. However, text sentiment classification in community scenes still faces challenges such as small corpus size, one-sided sentiment feature extraction, and insufficient sentiment classification accuracy. To address such problems, we propose a novel community speech text sentiment classification algorithm combining two-channel features and attention mechanisms to obtain effective emotional information and provide decision support for the emergency management of public emergencies. Firstly, text vectorization based on word position information is proposed, and a SKEP-based community speech–text enhancement model is constructed to obtain the corresponding corpus. Secondly, a dual-channel emotional text feature extraction method that integrates spatial and temporal sequences is proposed to extract diverse emotional features effectively. Finally, an improved cross-entropy loss function suitable for community speech text is proposed for model training, which can achieve sentiment analysis and obtain all aspects of community conditions. The proposed method is conducive to improving community residents’ sense of happiness, satisfaction, and fulfillment, enhancing the effectiveness and resilience of urban community governance
    corecore